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Abstract. The effectiveness of the bus system often relies not only
on the availability of buses but also on how well those buses are allo-
cated across different routes and time periods based on the passenger
demand. Uneven distribution of buses can lead to overcrowding on cer-
tain high-demand routes, while other routes may be underutilized, lead-
ing to wastage of resources. Operators face such issues in day-to-day
scheduling. This study addresses this gap by addressing the operator’s
dilemma of the number of buses allocated for maximum utilization of
the resources. The study developed an optimization-based approach to
minimizing the demand-supply gap by leveraging the potential of Elec-
tronic Ticketing Machine (ETM) data. The model considers three levels
of occupancy (or convenience) in the model to see the effect of optimiza-
tion. The ETM data from Indore, India, is used to develop the model.
The results confirm that the strategic distribution of service levels im-
proves capacity utilization by assigning appropriate occupancy in transit
vehicles based on the demand profiles of different routes. Notably, these
improvements were achieved without changing the fleet size. The find-
ings demonstrate that data-driven optimization can substantially reduce
the supply-demand gap in public transit systems by effectively utilizing
existing resources.
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1 Introduction

Urban public transportation systems play a pivotal role in shaping the mobility,
accessibility, and sustainability of modern cities. As urban populations continue
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to grow, especially in developing countries, public transport becomes an essential
service for ensuring equitable access to jobs, education, health services, and social
activities [1]. In most cities, buses constitute the backbone of the public transport
system due to their operational flexibility, lower infrastructure requirements, and
relative affordability compared to other modes of transport [12]. Cities across
the globe are actively investing in improving their bus networks to accommodate
increasing passenger volumes, reduce congestion, and lower carbon emissions.
However, the effectiveness of bus systems hinges not only on the availability of
buses but also on how well those buses are allocated across different routes and
time periods based on passenger demand.

Despite the critical role of buses in urban transport, many cities face per-
sistent challenges related to service quality, especially on individual routes [5].
Uneven distribution of buses can lead to overcrowding on certain high-demand
routes, while other routes may be underutilized, leading to wastage of resources.
From the passenger’s perspective, the quality of service is judged by factors such
as frequency [8], travel time, and its reliability [14], comfort, and availability
of seating [4]. A poorly allocated system, where buses do not match passenger
demand, often results in long waiting times, crowded buses, and reduced user
satisfaction, discouraging the use of public transport [13]. On the other hand,
routes that are overserved waste operational resources such as fuel, labor, and
maintenance capacity. Therefore, improving service quality requires a deep un-
derstanding of passenger demand and an efficient allocation of supply in response
to it.

The challenge lies in the demand-supply gap, the difference between the num-
ber of passengers requiring service and the available bus capacity on a particular
route during a given time period. When this gap is large, passengers may be
unable to board buses or face severe discomfort, leading to loss of ridership and
shifting to private modes of transport. Conversely, a negative gap implies un-
derutilization of buses, increasing per-passenger operational costs. Reducing this
gap is thus crucial not only for improving the passenger experience but also for
enhancing the efficiency and financial sustainability of public transport agen-
cies. A well-balanced demand-supply scenario ensures that each route is served
by an optimal number of buses that align with actual usage patterns, thereby
contributing to both operational performance and passenger satisfaction.

To effectively reduce the demand-supply gap, a variety of models and tools
have been developed over the years. Traditional methods often relied on man-
ual surveys and empirical rules of thumb to allocate buses based on average
daily ridership. Further research on transit frequency optimization approaches
addressing different aspects of the problem. Early work by [10] analyzed route
frequencies and trip distributions across zones, proposing an iterative solution
method. Later, [6] introduced a frequency-setting model focused on reducing
passenger wait times and overcrowding. Their approach involved a two-step
algorithm: first optimizing fleet size, then adjusting allocations to limit peak
crowding levels. Further advancements came from [11], who developed a method
to determine both vehicle sizes and route frequencies based on existing bus net-
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works and origin-destination demand data. Several additional studies are also
cited in Table 1. However, these approaches may fail to capture temporal varia-
tions, peak-hour congestion, or spatial inequities across routes. With the advent
of fare collection system’s and smart card ticketing systems, it has become pos-
sible to estimate demand at a much finer spatial and temporal resolution.

Among these, optimization models have emerged as powerful tools for sys-
tematically allocating limited bus resources in the most efficient manner. An
optimization model provides a mathematical framework to minimize or max-
imize an objective function, such as minimizing the total demand-supply gap
across all routes, subject to a set of constraints like total fleet size, maximum
buses per route, or operational costs. These models can incorporate real-world
constraints and trade-offs, making them highly applicable to practical transit
planning scenarios. However, implementing such solutions on a recurrent basis
can be challenging for operators, who may prefer adjustments, such as moving a
few buses between routes, rather than undertaking comprehensive rescheduling
for long-term planning. In this study, an optimization-based approach is used
to address the critical issue of bus allocation across transit routes, leveraging
observed passenger demand derived from Electronic Ticketing Machine (ETM)
data. ETM data, with its high granularity and accuracy, provides a reliable
source for estimating route-level demand, enabling data-driven decision-making
in transit planning. The objective is to minimize the divergence between de-
mand and supply by determining the optimal number of buses to be assigned
to each route, while adhering to constraints such as the total available fleet size
and minimum service frequency. The study leverages demand data aggregated at
route and time-of-day levels and formulates an optimization model. By focusing
on reducing the difference between the capacity and demand, the model aims to
ensure better utilization of buses.

2 Case study: Indore

The method examines the fixed-route bus services operated by Atal Indore City
Transport Service Limited (AICTSL). AICTSL, established in 2005, is the pri-
mary transit provider throughout Indore city, in Madhya Pradesh, one of India’s
fastest-growing urban centers. With its 34 bus routes, the city bus network serves
as a vital mode of transportation in Indore, catering to a population of over 2
million residents. The dataset used in this study originates from the Electronic
Ticketing Machines (ETMs) deployed across public buses operating in Indore,
India. ETMs automatically capture rich, operational, and service data, including
trip-level details, timestamps, route identifiers, passenger counts, and revenue in-
formation. This comprehensive ticketing data provides a detailed representation
of the transit system’s performance and passenger demand patterns, making it
invaluable for optimization analysis.
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Table 1: Summary of past studies on optimization models

Study objective decision vari- constraints model outcome
function ables

(3] Minimize Shipment Capacity, Mixed-integer Efficient sup-
total cost quantities, demand linear pro- ply chain
(transporta- inventory levels fulfillment, gramming optimization
tion + hold- inventory (MILP) under uncer-
ing) balance tainty

[9] Minimize Facility = loca- Budget, facil- Stochastic pro- Robust opti-
total logistics tions, trans- ity  capacity, gramming mization for
cost portation demand satis- disaster relief

routes faction logistics

[7] Maximize Production Resource con- Nonlinear Sustainable
profit in quantities, straints, en- programming supply chain
closed-loop  recycling rates vironmental (NLP) with recycling
supply chain regulations benefits

[15] Minimize Power genera- Power bal- Convex opti- Improved en-
energy  con- tion, storage al- ance, trans- mization ergy efficiency
sumption in location mission limits in smart grid
smart grids systems

[16] Minimize pas- Bus  frequen- Fleet size, ca- Mixed-integer Improved bus
senger waiting cies, dispatch- pacity programming scheduling
time ing times

2] Maximize Route alloca- Budget, Two-stage Enhanced dis-
network  re- tions, resource resource stochastic aster response
silience distribution availability =~ programming

[17] Minimize to- Traffic  signal Road capac- Dynamic pro- Urban traffic
tal travel time timing, route ity, safety gramming optimization

assignments rules

2.1 Data preprocessing

The ETM data went through multiple transformations to convert them into
suitable values for optimization problem.

1. Peak hour filtration: While the suggested method can be applied to any
time interval, the current research is centered on the peak demand hours
(cf. Figure 1), during which optimal bus allocation is most important. To
this end, the Electronic Ticketing Machine (ETM) data, i.e., passenger-level
ticketing data, was preprocessed to keep only those transactions that fall
within the peak hours.

2. Boardings aggregation: For every bus stop and route pair, the total num-
ber of passenger boardings (B; ) during the period is calculated, where i
represents the route and s represents the stop. This helped in the analysis
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Fig. 1: Hourly demand (passengers) and supply (number of buses)

of the distribution of demand along each route. The demand on each route
can be represented mathematically as:

Di=> B, Viel (1)
SES;

where S; represents the set of all stops along route i, and D; represents the
total passenger demand for route ¢ during the given period.

Initial bus assignment: To determine the initial number of buses assigned
to each route, the number of unique buses operating on that route during the
given period is calculated. This value is denoted by INV;, representing the total
number of buses assigned to route i. The total number of buses operating
across the entire network during the study period is constant and given by:

Ny=>_N; (2)
il

where Ny represents the total number of distinct buses in operation and I
is the set of all routes.
Supply calculation: The current supply for each route is calculated as the
sum of seating capacity(Sy) and the standing capacity ( ST}) over all routes.
Standing capacity depends on the person density in the bus; higher is the
density, higher is the capacity and lower is Level of Service (LoS).

N;
Ci=)Y (S+8Ty) Viel (3)
b=1
where N; is the number of buses operating on route i and C; represents the
total passenger capacity on route i.
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The preprocessing resulted in the following variables for our optimization
problem:

Route number (7)

Total passenger demand for each route (D;)
Total number of buses for each route (V)
Total current capacity of each route (C;)

3 Methodology

This paper presents an optimization approach for allocating buses across multi-
ple routes during the peak period. For the current study, the 9-11 AM peak time
interval is taken as discussed in the previous section, in order to enhance capacity
and demand matching of passengers. The approach involves a mathematical op-
timization model, comprehensive implementation procedures, and performance
indicators to measure the performance of the suggested optimization model.

3.1 Problem formulation

The bus allocation problem is addressing how to allocate a fleet of buses to
routes in such a manner that the capacity offered minus demand is minimized.
It is an optimization problem whose main parameters are as follows:

— Routes: A set of routes in which each route is a separate bus route. There
are 34 working routes during the 9-11 AM time period.
— Bus fleet: There are a total of 273 (V) buses in the ETM data that operate
during the selected peak hours.
— Service types:
e High convenience service (Cy) having ST, = 0.
e Moderate convenience service (Cj) having 0 < ST, < 15.
e Low convenience service (Cr) having 15 < ST, < 30.
— Initial deployment: The original number of buses allocated to a route

according to the initial bus assignment.

3.2 Mathematical Model

Objective function: The objective is to minimize the total of absolute differ-
ences between the capacity and passenger demand assigned to each route. The
individual capacity for every route is estimated by adding up the total of all the
assigned buses multiplied by their respective capacities. The aim is to minimize
the overall gap between capacity and demand so that equitable distribution and
optimal utilization of resources can be provided.

min Z zi= min Z ’C;‘wtal _ Di’ (4)

H M .L M L

T, %, 0% e T, %, 00%b,i e
Where:
Ny
total H M L
Cy = E (Cu -yl + Ownr -y + Cr - ) (5)

b=1
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Decision variables: The model uses binary decision variables to represent the
assignment of each bus to specific routes and vehicle service types:

il € {0,1} vbe{1,2,...,N; 1, Viel (6)
zps € {0,1} vbe {1,2,...,N;},Viel (7)
v, €{0,1} Vvbe{1,2,...,N; 1, Viel (8)

Where:

— xfl, = 1 if bus b is assigned to route i under the high-convenience service

level (i.e., no standing passengers); 0 otherwise.

x% = 1if bus b is assigned to route ¢ under the moderate-convenience service

level (i.e., limited standing capacity); 0 otherwise.

— ng, , = 1 if bus b is assigned to route 7 under the low-convenience service level
(i.e., higher standing capacity allowed); 0 otherwise.

— Ny denotes the total number of buses available in the network on a given

operational day.

Additionally, auxiliary continuous variables is defined z; € RT U {0},Vi € I,
to represent the absolute deviation between the total passenger-carrying capacity
allocated to route i and the empirically observed passenger demand for route 1.

Constraints: The model takes into account the following constraints:

Assignment limitation : Each bus can be assigned to at most one route and one
service category.

S (@t a)i+ap) <1 Wbe{L2,... f} (9)
icl
Minimum bus constraint : All routes must be assigned at least a single bus.
Ny

S (@ +api+ap) =1 Viel (10)
b=1

Deviation linearization : For optimization convenience, linear constraints are
employed to model the absolute deviation in a computationally tractable way.

Ny
Z’LZZ(CHxgz+CN[x%+CbeL’z)_Dl Viel (11)
b=1

Ny
%>D;i =Y (Cu-afy+Cy -z +CpLoaf,) Viel (12)
b=1
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Total fleet : The total number of buses assigned across all routes should not
exceed the available fleet, denoted as Ny.

Ny
YD (il + 2k + at) < Ny (13)
b=1 i€l

3.3 Implementation

The optimization model was solved using the Gurobi optimization solver through
its Python interface. The procedure is as follows:

Model construction and solution: The implementation creates a Gurobi
optimization model with:

— Binary decision variables for bus-route assignments.

— Support variables for demand-capacity imbalance.

— Constraints imposed to ensure valid and effective allocation.
— Objective to minimize total deviation.

The optimization problem was addressed using Gurobi’s branch-and-bound
algorithm to determine the optimal solution.

3.4 Comparative analysis

To evaluate the advantages of the optimization model, the original and optimized
allocations were compared: (a) changes in route-level bus allocation, (b) reduc-
tions in the supply-demand gap, and (c) bus service levels are reevaluated across
routes based on passenger demand to show capacity and comfort. This evaluation
identifies areas for improvement and demonstrates the value of the optimization
strategy in practical transit planning scenarios.

4 Results and Discussion

4.1 Value of objective function

The value of the objective function over iterations is shown in Figure 2. As
required, the value of objective function drops significantly in the beginning and
then stabilizes over the iterations. At iteration 40, the objective value is 182.0,
which indicates a nearly optimal bus allocation with negligible mismatch.
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Fig. 2: Convergence of optimization function with iterations

4.2 Bus reallocation

Figure 3a illustrates the initial and optimized allocations for each route, high-
lighting the routes that experienced an increase or decrease in the assigned buses
after optimization. Further, Figure 3b provides the net changes in bus alloca-
tion resulting from the optimization process to perfectly illustrate how buses
were taken from routes with excessive supply and assigned to routes with exces-
sive demand. Overall, the most significant changes occurred on routes that had
extreme differences in demand and supply values in the initial assignment. For
instance, Route R-5, having the highest demand, received an additional 10 buses
in the optimized allocation, while routes like M-4 and E-3 had their allocation
reduced by 4 and 3 buses, respectively, allowing reallocation of excess buses.

4.3 Capacity utilization

Figure 4a shows the average demand at each route initially and the number of
buses assigned on each route after optimization for all routes. On a few routes,
where the demand is low, minimally a bus is assigned to respect the accessibility
(e.g., see last four routes in Figure 4a). Figure 4b demonstrates a comparison
of the allocation of buses to various transit routes according to convenience or
occupancy. The first set of stacked chart for each route shows the occupancy
or convenience before optimization and second set of stacked chart exhibits the
results after optimization. Most of the buses have low convenience, i.e., higher
occupancy to meet the demand, particularly for crowded routes R-5, M-6, and
M-27. High Convenience buses and moderate convenience buses are allocated to
some routes, on the basis of certain requirements and capacity for such routes,
which makes them more occupied and less convenient. A combination of various
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Fig. 3: Optimization results showing a number of buses allocated on each route
before and after

types of buses on some routes and a single type on others reflects a thoughtful
use of resources in the transit system.

Figure 5 shows the bus composition of the network for the original and op-
timized fleets. The original fleet had 151 low-convenient buses, 44 moderate-
convenient buses, and 78 high-convenient buses. After optimization, the same
numbers are 199, 37 and 37, respectively, which clearly highlights the effect of
optimization. This shift implies that there will be more buses with higher occu-
pancy that are less convenient. Although the overall number of buses remains
constant at 273, the overall number of spaces (for passengers) will increase from
18,840 to 20,175. The optimization maximizes the use of available capacity by
allocating the more passengers in the transit vehicles on different routes to have a
better fit and lesser gap between demand and supply. Clearly, from the operators
perspective, more crowded buses are good but from the passengers’ perspective,
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it is inconvenient. Thus, in the future, an increase in the occupancy may be
considered as a penalty and model may be re-optimized.

5 Limitations

Although there are great improvements evident through the optimization model,
there are necessary restrictions to point out:

1. Static demand assumption: The model assumes demand for passengers
to be static, while real demand varies depending on the quality of the service,
frequency, hour of the day, day of the week, and season. A dynamic method
with demand elasticity may yield more realistic results.
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2. Operational restrictions: Even though the model has significant oper-

ational restrictions like the total capacity of the fleet and availability of
different bus types, it does not include driver schedules, maintenance needs,
and other operational complexities that could change the feasibility of the
model.

Fixed route network:The optimization is for a fixed route network and
consists of bus allocation alone. Combined bus allocation and route optimiza-
tion could lead to even higher increases in system effectiveness. Optimizing
both route configuration and bus allocation simultaneously would lead to
dynamic adjustments in route frequency and sequence of stops in the route
depending on the demand.

Representation of aggregate demand: The model is aggregate passen-
ger volume and does not represent the geographical distribution of demand
across routes or the passenger comfort choice, which can affect the perceived
quality of service.

In the future, more research must break these limitations to build more so-

phisticated optimization models that can provide more meaningful suggestions
for planning and operating public transport systems.
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6 Conclusion

The study presented an optimization-focused approach to improve bus distribu-
tion in city bus routes, effectively balancing demand and supply. The applied
model on Indore buses significantly enhanced efficiency by reallocating the ex-
isting fleet without adding new buses. This data-driven approach highlights how
transit systems can maximize efficiency within existing constraints. The study
showed the possibility of better bus utilization across different routes, i.e., buses
from unde-utilized routes are re-assigned to over-utilized (or under-supplied)
routes. Further, it also demonstrated that after optimization highly occupied
buses increased from 55% to 73%, which is desirable from operator’s perspec-
tive. Future work could incorporate time-varying demand patterns for adaptive
scheduling. Integrate operational constraints like driver shifts and maintenance,
and expand the framework for multi-model integration and inter-route trans-
fers. Additionally, passenger comfort and environmental metrics could further
refine optimization, promoting sustainable urban mobility. The findings of this
study have important real-world implications for transit operators and plan-
ners, demonstrating that meaningful service improvement is achievable through
efficient utilization even within existing budget and fleet constraints. Through
careful supply and demand trend matching management, transit agencies are
well-positioned to improve service quality, improve operating efficiency, and even
increase ridership, leading to more efficient urban mobility systems.
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